JavaScript's ecosystem is uniquely paranoid
Another week, another NPM-related snafu. Why does this keep happening to the JavaScript ecosystem? The answer is paranoia. đ±
Many are quick to assert that JavaScript just has a too-low barrier to entry and the n00bs are messing it up. Whenever anyone says âJavaScript is the new PHP!â this is probably what they mean. I donât feel the need to provide evidence against this claim; I think it comes from an understandable frustration, expressed through all-too-common tech elitism.
Others say we should blame resume-driven-development, and the ego boost of having published thousands of open-source modules. We must all suffer, the argument goes, because a few obsessive individuals want to be able to boast about how critical they personally are to the JavaScript ecosystem. While this is probably a real trend, why isnât it more prevalent in other open-source ecosystems?
Disclaimer before proceeding: I use JS every day, and I actually really like it. Iâm not trying to criticise it, just to explore some unique problems it has. I hope this post doesnât come across as too harsh.
There are probably many contributing factors that have shaped NPM into what it is today. However, I assert that the underlying reason for the bizarre profusion of tiny, absurd-seeming one-liner packages on NPM is paranoia, caused by a unique combination of factors.
JavaScript makes you paranoid
Three factors have caused a widespread cultural paranoia among JavaScript developers. This has been inculcated over years. These factors are: JavaScriptâs weak dynamic type system; the diversity of runtimes JavaScript targets; and the physics of deploying software on the web.
1. Weak dynamic typing
Itâs well-known that JavaScriptâs âtype systemâ leaves a lot to be desired. This well-known talk is a humourous take on some of the many ways you can shoot yourself in the foot in JavaScript.
Unless your team (and every open-source package your team depends on) always uses ===
, knows exactly when typeof
is acceptable, is good at defensive programming, and designs APIs that have good type discipline*, youâve probably been tripped up by a string that behaved like a number, a 0 that was skipped for being falsy, an undefined
turning up somewhere surprising, typeof null === 'object'
, etcetera.
This isnât entirely unique to JavaScript - many languages have dynamic types, and many languages have weak types and implicit coercions. But I would argue JavaScript is quite a dire example. And this is still an important contributing factor, without which the second factor probably wouldnât be as significant.
*Or, you are TypeScript users. See Appendix 3.
2. Browser runtimes
Itâs not just the case that âJavaScript is missing a standard libraryâ. For example, there is a really easy and straightforward âstandardâ way to check if an object is an array: thing instanceof Array
.
But wait! Enter the iframe
! If the array came from a different context, this check will fail, because the iframe
âs Array
constructor is a different object from the parent windowâs Array
. Do you really know where that value came from?
Enter Array.isArray
to save the day! But wait! What if your code needs to run in an older browser which doesnât support isArray
? Is your transpilation+polyfill pipeline reliable enough to handle this? What do you mean youâre not using babel-env-preset
or whatever the package is called now? This is the downfall of many a well-intentioned addition to JavaScriptâs standard library (like String.padStart
).
Having to deal with an extreme diversity of runtimes seems unique to JavaScript among mainstream languages. This could be my bias showing (Iâm primarily a web developer), but itâs certainly true of the difference between web frontend code and web backend code. You just never know where your code is going to run - in Internet Explorer 8, on Opera for Android, or someoneâs old version of Safari on their iPhone 5 theyâre clinging to because it would be too expensive to upgrade.
This is bad enough for application developers, who can to some extent draw a line and decide not to support users in certain demographics. (Or, in Koganâs case, charge those users more.) But itâs a nightmare for library developers, who want to make their code usable by as many other developers as possible.
3. Bundle size
Do you remember a few months ago when the internet joined in a collective hate-on for the is-buffer
package? This package, as its name suggests, checks whether something is a Buffer.
Why would one need a package for that? Well, weak typing might make one want to check types like this; moving targets in the runtime might make one worry that one doesnât know how to check the type reliably - but still, why doesnât one just depend on the buffer package?
Enter the final triumvir of this unholy alliance: bundle size paranoia, which was ostensibly the reason the is-buffer
package was created. Because JavaScript programs have to be downloaded frequently by users (even multiple times by the same user on the same day, if caching isnât used carefully), and because Google has convinced us that milliseconds of additional page load time will have dire consequences for our users and consequently for our bank accounts, and because bundlers and module systems have not provided adequate support for modularity, we web developers go to extreme lengths to avoid shipping unnecessary bytes to our users.
When the unit of modularity is âNPM packageâ, rather than âfileâ or even âfunctionâ, some will go to great lengths to split their code across NPM packages. (For more on this, see Appendix 1.) This works with old bundlers that canât tree-shake, and it can avoid reuse - though as noted by the lodash project itself, they are thankfully moving away from this pattern because it may introduce more opportunities to duplicate code than to deduplicate it!
A huge amount of effort has been poured into not just minifying a source bundle, but producing the best possible bundle in the first place. The NPM ecosystem as it stands today has been shaped in part by these efforts.
Future proof
These three factors combine and interact in unexpected and awful ways.
Over the years there has been rapid evolution in both frontend frameworks and backend JavaScript, high turnover in bundlers and best-practises. This has metastasized into a culture of uncertainty, an air of paranoia, and an extreme profusion of small packages. Reinventing the wheel can sometimes be good - but would you really bother doing it if you had to learn all the arcane bullshit of browser evolution, IE8 compatibility, implementation bugs, etc. ad infinitum?
And itâs not just that you donât understand how things work now, or how they used to work - but that theyâll change in the future!
Whenever NPMâs package culture is discussed, one of the benefits touted is that if one of your dependencies is ever updated, your own code will now be updated âfor freeâ! Your application will remain correct, because it depends on an abstraction that will remain correct. (Abstractions are good, but see Appendix 2.)
This is a very reasonable expectation, and an important piece of progress in software development. But I believe the paranoia created by the three factors I discussed above have led to the excesses we see in the current NPM ecosystem. This is why we have is-even and its whole ludicrous web of dependencies, and why we donât have is-even
in Python.
âSurely,â the rational developer exclaims, âthere could be no future changes to the is-even
package. The definition of even numbers isnât going to change any time soon!â
No, the definition of even numbers wonât ever change. But sadly, my friend, this is JavaScript - and you can never really be sure.
Discuss this post on dev.to
Appendix 1. In praise of modules
My thoughts on this issue have been brewing for a while, but this comment by Sindre Sorhus, noted small-package developer, really put it all in focus for me.
Sindre makes a very good argument in favour of modules:
tl;dr You make small focused modules for reusability and to make it possible to build larger more advanced things that are easier to reason about.
However, this is not an argument in favour of NPM packages. All the benefits Sindre lists could be achieved by simply designing programs in a modular way. If another developer wants to avoid having to re-implement an interesting but not-entirely-trivial piece of functionality, they should be able to lift a well-defined module (ideally a single file) from one project to another.
A lot of the issues with NPM are caused by⊠well, NPM, not by some inherent property of small modules. This was the case for last weekâs is-promise
debacle (which precipitated me actually writing this blog post). Small NPM packages are the âproblemâ, not small modules, and the problem, at its root, is caused by paranoia.
Appendix 2. The meaning of abstractions
Whatâs wrong with this code?
const isPromise = require('is-promise');
if (isPromise(thing)) {
thing.then(successCallback).catch(failureCallback);
}
(Itâs from a real application that uses is-promise
, but I wonât name names.)
Did you spot it? catch
might be undefined. Why? is-promise
implements the Promises/A+ spec, which only requires a then
method. The specific meaning of âis thing
a promise?â can actually change based on how you want to use the answer. The âpromiseâ is not a reliable abstraction here, because JavaScript has so many versions of it, and because promises can be used in many ways.
This is slightly tangential to the paranoia discussed above, but is an outcome of a âdonât askâ approach to packages (âdonât askâ because the details will horrify you), and probably not unique to JavaScript.
UPDATE: apparently even the package maintainer failed to notice the distinction between a
Promise
and something that has athen
method. This stuff is not trivial.
The pattern of doing this kind of typecheck is all-too-prevalent in the JS ecosystem, which privileges APIs that seem âsimpleâ because you can chuck anything you want into them, but pushes the burden of being compatible with every conceivable input onto the library. Which brings me to my next appendixâŠ
Appendix 3. TypeScript
Is there a solution to all this? How can we stop the madness?
I donât believe TypeScript is a solution. If anything, itâs a clear symptom of the problem. But I believe that TypeScript helps do something important: it makes poorly-typed code annoying to write.
Yes, you can design a method that accepts anything from a string
to a then
able that will return an object containing a Float64Array
, but writing the type of that method becomes ugly, and implementing it becomes a pain because TypeScript forces you to demonstrate to its satisfaction that youâve done it correctly.
Fewer APIs that take and return different types make it less necessary to implement code like is-buffer
, is-number
, etcetera. Of course, browser compatiblity and bundle size anxiety will still present problems. But maybe with an increase in JavaScript developers designing code with types, weâll see less demand for typecheck packages and the like.
Appendix 4. Deno
One of the reasons Iâm excited for Denoâs upcoming stable release is that it builds on a philosophy of fewer, better dependencies. But even in cases where you need a specific dependency, Denoâs URL-based imports make it trivial to:
-
Import just a single file without downloading a whole package plus its tests and everything else. Refer back to Appendix 1 for why this is cool.
-
Pin each import to a commit hash or other stable identifier.
Yes, many people are concerned about the idea of importing URLs for many legitimate reasons. NPM is a more trusted place to host packages than some random website. But not even NPM can be 100% reliable indefinitely. Deno at least makes you stop and think⊠do I trust this source?